WDL III™

WELD DATA LOGGER MODEL III

Operation / Installation Manual

Manual Part Number: A8M5031
Revised: 11/14/2017
SAFETY PRECAUTIONS – READ BEFORE USING

Welding is not particularly hazardous when certain safety practices are followed. Everyone using this equipment should be thoroughly trained in safe welding practices. Failure to observe safe practices may cause serious injury.

Handling welding torches presents no danger if the appropriate safety regulations are strictly adhered to. For example:

- Starting procedures must be reserved for those fully conversant with processes relating to arc welding equipment.
- Arc welding can prove damaging to eyes, skin, and hearing! It is therefore imperative that both management and operators understand and follow the ANSI Standard Z49.1, SAFETY IN WELDING AND CUTTING. All Personal Protective Equipment (PPE) shall be in place in accordance with this referenced specification and all other applicable and governing regulations.
- The operating data provided in the Specifications are maximum values. Overloading the welding torch will inevitably damage the product and void any and all warranties.
- Before changing any parts on the torch or control box, disconnect the torch from the welding power source and disconnect the control box input power source. Unplug the control box from the electrical outlet.
- The operating instructions for all other welding components - e.g. power source, wire feed and cooling unit must be followed per the manufacturer’s recommendations.
- Never pull the cable assembly across sharp edges or set down on a hot surface.
- Never move the torch by pulling or dragging by the welding torch or cable.
- Curtains or partitions shall be installed to protect other workers or observers from arc radiation.
- When handling gas cylinders, consult the instructions issued by the manufacturers and the suppliers of the pressurized gas.
- Work pieces that have been degreased using chlorinated solvents must be sprayed down with clean water before welding starts to avoid the risk of phosgene forming. For the same reason, no degreasing baths containing chlorine must be placed close to the welding point.
- All vapors given off by metals can cause harm and a special warning is attached to lead, cadmium, copper, zinc, and beryllium. Take appropriate precautions to ensure that the legal maximum levels of toxic concentrations are not exceeded.
- Do not touch the welding torch with bare skin until it has had adequate time to cool down.
- Wait to adjust the rotation diameter until the torch has cooled to room temperature.

Fume and Gases

FUMES AND GASES can be hazardous. Welding and cutting produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding and cutting fumes and gases. The recommended way to determine adequate ventilation is to sample for the composition and quantity of fumes and gases to which personnel are exposed.
- If ventilation is poor, wear an approved air-supplied respirator.
- Read and understand the Safety Data Sheets (SDSs) and the manufacturer’s instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes and metals.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watch-person nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
• Do not weld or cut in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
• Do not weld or cut on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and while wearing an air supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.

Arc Rays

ARC RAYS can burn eyes and skin. Arc rays from welding and cutting processes produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.

• Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding, cutting, or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
• Wear approved safety glasses with side shields under your helmet.
• Use protective screens or barriers to protect others from flash, glare and sparks; warn others not to watch the arc.
• Wear body protection made from durable, flame resistant material (leather, heavy cotton, wool).
• Body protection includes oil-free clothing such as leather gloves, heavy shirt, cuff less trousers, high shoes and a cap.

Welding and Cutting

Welding or cutting on closed containers such as tanks, drums or pipes, can cause them to blow up. Sparks can fly off from the welding or cutting arc. The flying sparks, hot work piece and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating or fire. Check and be sure the area is safe before doing any welding or cutting.

• Remove all flammables within 35 ft. (10.7 m) of the welding or cutting arc. If this is not possible, tightly cover them with approved covers.
• Do not weld or cut where flying sparks can strike flammable material.
• Protect yourself and others from flying sparks and hot metal.
• Be aware that welding sparks and hot materials from welding and cutting can easily go through small cracks and openings to adjacent areas.
• Watch for fire, and keep a fire extinguisher nearby.
• Be aware that welding or cutting on a ceiling, floor, bulkhead or partition can cause fire on the hidden side.
• Do not weld or cut on containers that have held combustibles, or on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 and AWS A6.0 (see Safety Standards).
• Do not weld or cut where the atmosphere may contain flammable dust, gas, or liquid vapors (such as gasoline).
• Connect work cable to the work as close to the welding or cutting area as practical to prevent welding or cutting current from traveling long, possibly unknown paths and causing electric shock, sparks and fire hazards.
• Do not use welder to thaw frozen pipes.
• Remove stick electrode from holder or cut off welding wire at contact tip when not in use.
• Remove any combustibles, such as a butane lighter or match, from your person before doing any welding or cutting.
• After completion of work, inspect area to ensure it is free of sparks, glowing embers, and flames.
• Use only correct fuses or circuit breakers. Do not oversize or by-pass them.
• Follow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B for hot work and have a fire watcher and extinguisher nearby.
• Read and understand the Safety Data Sheets (SDSs) and the manufacturer’s instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes and metals.

Electric Shock

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In gas metal arc welding (GMAW), the wire, wire reel, drive roll housing and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

• Do not use AC output in damp areas, if movement is confined, or if there is danger of falling.
• Use AC output ONLY if required for the welding or cutting process.
• If AC output is required; use remote output control if present on unit. Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying; or when there is a high risk of unavoidable or accidental contact with the workpiece or ground. For these conditions, use the following equipment in order presented: 1) a GMAW DC constant voltage (wire) welder, 2) a DC manual (stick) welder or 3) an AC welder with reduced open circuit voltage. In most situations, use of a DC, constant voltage wire welder is recommended. And, do not work alone!
• Disconnect input power or stop engine before installing or servicing equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).
• Properly install, ground, and operate this equipment according to its Owner’s Manual and national, state/provincial and local codes.
• Always verify the supply ground – check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.
• When making input connections attach proper grounding conductor first and double-check connections.
• Keep cords dry, free of oil and greases and protected from hot metal and sparks.
• Frequently inspect power cord for damage or bare wiring. Replace cord immediately if damaged. Bare wiring can kill.
• Turn off all equipment when not in use.
• Do not use worn, damaged, undersized or poorly spliced cables.
• Do not drape cables over your body.
• If earth grounding of the workpiece is required; ground it directly with a separate cable.
• Do not touch electrode if you are in contact with the work, ground or another electrode from a different machine.
• Do not touch electrode holders connected to two welding machines at the same time since double open circuit voltage will be present.
• Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.
• Wear a safety harness if working above floor level.
• Keep all panels and covers securely in place.
• Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.
• Insulate work clamp when not connected to workpiece to prevent contact with any metal object.
• Do not connect more than one electrode or work cable to any single weld output terminal. Disconnect cable for process when not in use.

Cylinders

Compressed gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

• Protect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks and arcs.
• Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
• Keep cylinders away from any welding, cutting or other electrical circuits.
• Never drape a welding electrode or cutting torch over a gas cylinder.
• Never allow a welding electrode or cutting torch to touch any cylinder.
• Never weld on a pressurized cylinder – explosion will result.
• Use only the correct compressed gas cylinders, regulators, hoses and fittings designed for the specific application; maintain them and associated parts in good condition.
• Turn face away from valve outlet when opening cylinder valve. Do not stand in front of or behind the regulator when opening the valve.
• Keep protective cap in place over valve except when cylinder is in use or connected for use.
• Use the right equipment, correct procedures and sufficient number of persons to lift and move cylinders.
• Read and follow instructions on compressed gas cylinders, associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.
Additional Safety Warnings for Installation, Operation and Maintenance

READ INSTRUCTIONS

• Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing the unit.
• Read the safety information at the beginning of the manual and each section.
• Use only genuine replacement parts from the manufacturer.
• Perform maintenance and service according to the Owner’s Manual, industry standards and national, state/provincial and local codes.

ELECTRIC AND MAGNETIC FIELDS (EMF) can affect implanted Medical Devices

• Wearers of Pacemakers and other Implanted Medical Devices should keep away.
• Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting or induction.

H.F. RADIATION can cause interference

• High-frequency (H.F.) can interfere with radio navigation, safety services, computers and communications equipment.
• Have only qualified persons familiar with electronic equipment perform this installation. The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
• Have the installation regularly checked and maintained.
• If notified by the FCC about interference, stop using the equipment at once.
• Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting and use grounding and shielding to minimize the possibility of interference.

California Proposition 65 Warnings
Welding or cutting equipment produces fumes or gases that contain chemicals known to the State of California to cause birth defects and in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.) This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. Wash your hands after using.

EMF Information
Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). The current from arc welding (and allied processes including spot welding, gouging, plasma arc cutting, and induction heating operations) creates an EMF field around the welding circuit. EMF fields may interfere with some medical implants, e.g. Pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, restrict access for passersby or conduct individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
1. Keep cables close together by twisting or taping them, or using a cable cover.
2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld while carrying the welding power source wire feeder.

About Implanted Medical Devices:
Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.

Safety Standards
- ANSI Standard Z41.1, STANDARD FOR MEN’S SAFETY - TOE FOOTWEAR obtainable from the American National Standards Institute, 1430 Broadway, New York, NY 10018.
- ANSI Standard Z49.2, FIRE PREVENTION IN THE USE OF CUTTING AND WELDING PROCESSES obtainable from the American National Standards Institute, 1430 Broadway, New York, NY 10018.
TABLE OF CONTENTS

1.0 GENERAL DESCRIPTION ... 1

2.0 INSTALLATION... 3
 2.1 POWER-UP TESTING PROCEDURE ... 3
 2.2 CURRENT SENSOR INSTALLATION .. 4
 2.3 VOLTAGE SENSOR CABLE INSTALLATION .. 4
 2.4 GAS FLOW INSTALLATION .. 5
 2.5 WIRE SPEED TRANSDUCER INSTALLATION .. 6
 2.6 TRAVEL SPEED TRANSDUCER INSTALLATION ... 6
 2.7 TEMPERATURE SENSOR INSTALLATION .. 6
 2.8 PRINTER INSTALLATION .. 7
 2.9 REMOTE I/O CABLE INSTALLATION .. 8

3.0 WDL III SETUP.. 9
 3.1 ALTER MODE SUB MENU SCREENS ... 9
 3.2 EDIT MENU PARAMETERS .. 10
 3.3 FUNCTION AND DESCRIPTION OF MENU PARAMETER SCREENS 11

4.0 WELD MONITORING.. 26
 4.1 ARC DETECT (ARC ON / ARC OFF) .. 26
 4.2 WELD DATA SCREEN .. 27
 4.3 MONITORING WELDING DATA .. 27
 4.4 TOTALIZE WELD DATA .. 28

5.0 COMMUNICATIONS MODBUS MEMORY MAP ... 31
 5.1 GENERAL DESCRIPTION .. 31
 5.2 SUPPORTED MODBUS COMMANDS .. 31
 5.3 MEMORY MAP FOR SENSOR ... 31
 5.4 COIL DEFINITIONS AND OPERATION ... 33
 5.5 REGISTER DEFINITIONS .. 34

6.0 ETHERNET COMMUNICATIONS SETUP .. 36

7.0 INSTALLATION DRAWINGS AND PARTS LISTS.. 39
 7.1 WDL III STANDARD SYSTEM CONFIGURATIONS .. 39
 7.2 WDL III SYSTEM UPGRADES .. 40
 7.3 CURRENT SENSOR KIT ... 41
 7.4 VOLTAGE SENSE CABLE ... 42
 7.5 WIRE SPEED SENSOR KITS ... 43
 7.6 TRAVEL SPEED SENSOR KIT .. 49
 7.7 GAS FLOW SENSOR KIT .. 51
 7.8 TEMPERATURE SENSOR KITS .. 53
 7.9 I/O CABLE .. 55
 7.10 SERIAL PRINTER KIT ... 56
 7.11 ETHERNET CONFIGURATIONS .. 57
 7.12 HIGH FREQUENCY ISOLATION KIT .. 58
 7.13 USB CONFIGURATIONS .. 59

APPENDIX .. 65
1.0 GENERAL DESCRIPTION

The Weld Data Logger III (WDL III) is an arc welding data collection system, which can be used to monitor all arc welding processes. The unit has a microcontroller based data acquisition PCB assembled with an OLED or equivalent graphic 256x64 pixel display, four user programming buttons, three optically isolated inputs and three isolated solid state relay (SSR) outputs.

System Specifications:

Dimensions: Approximate: 7.75" wide x 4.5" deep x 2.5" high

Weight: 4 lbs. (1.8kg)

Power Input: 12 – 32vdc @ 0.5 amps (nominal 24 VDC input)

Relay Outputs: Optically isolated 48 VDC @ 0.1 amp solid state relays (SSR)

Logic Inputs: Optically isolated 12 – 24 VDC @ 10ma

Ethernet Port: RJ45 Ethernet 10Base-T or 100Base-TX (auto-sensing)

Compatibility: Ethernet: Version 2.0/IEEE 802.3 (electrical), Ethernet II frame type.

Management: Internal WEB server, SNMP (read only), Telnet Login, and Serial Login

Protocols: ARP, UDP/IP, TCP/IP, Telnet, ICMP, SNMP, DHCP, BOOTP, TFTP, Auto IP, SMTP, and HTTP

Web Server: Serves static web pages and Java applets with 384K byte storage capacity.

Voltage Sensor:
- Accuracy: 0-100 VDC; Accuracy ±2.0 % Full Scale ±2 digits
- Resolution: 0.1 volts

Sensor Current:
- Accuracy: 0-1000 ADC; Accuracy: ±1.0% Full Scale ±2 digits
- Resolution: 1 adc

Optional Wire Speed Sensor:
- Range: 10 – 1000 IPM (1- 420 mm/s)
- Accuracy: ±3% Full Scale ±2 digits
- Resolution: 1 IPM (1mm/s)

Optional Travel Speed Sensor:
- Range: 0-5.0 ADC
- Accuracy: ±3% Full Scale ±2 digits
- Resolution: 0.01 amps

Optional Gas Flow:
- Range: 5-255 CFH (2 – 120LPM)
- Accuracy: ±3% of Full-Scale ±1 digit
- Resolution: 1 CFH (LPM)
- Gas Type: (Standard) Argon, Argon/CO2 (95/5, 90/10, 80/20, 75/25), CO2, Helium
Optional Temperature Sensor:
Range: 1-1000° F (1 - 537 C)
Accuracy: Depends to type of sensor
Resolution: 1°

The WDL III has the following features:

- Internal Non-Volatile memory to store up to 4,000 welds summaries
- Compact NEMA 12 rated enclosure with “M12” style mini circular connectors.
- Ethernet port for remote data uploads using Modbus TCP/IP protocol or USB port for PC serial communications with Modbus RTU protocol
- All run time weld data is collected from the enabled sensors. The WDL III will summarize the data at the end of the weld. The data is stored with a Date/Time stamp, Station ID and a sequential weld count number.
- The WDL III will calculate a Heat Input using a user entered Weld Length, Manual Travel Speed Value or an Optional Travel Speed Sensor.
- The User can enable the Temperature when not welding for Pre-Heat values. The measured Temperature value will display on the WDL III Idle screen. An Optional Thermocouple or IR Sensor must be purchased for this feature.
2.0 INSTALLATION

This section contains the following information on the installation of the WDL III system:

- Power-up testing
- Installation of system transducers and sensors
- Printer installation

2.1 POWER-UP TESTING PROCEDURE

Begin the installation of a WDL III system by performing the following:

1. Carefully unpack the unit and associated transducers, sensors, and cables. Inspect the items for possible shipping damage and report any damage to the carrier.

2. Locate the power adaptor assembly and insert the connector into the power receptacle on the rear panel of the unit. Plug the power adaptor into a suitable power source.

 NOTE: The WDL III power adaptor can operate on either 115 VAC or 220 VAC 50/60 HZ. Only use the Power Adaptor provided by CWT with the WDL III. Use of a third party or over the counter power adaptor with the WDL III will void the Warranty. If the power adaptor is lost or damaged order a replacement unit PN # X3T5089.

3. Install all of the sensors and connect each sensor cable to the back of the WDL III (see paragraph 2.2 through 2.8 for sensor installation).

4. Power up the unit by pressing the power switch on the front panel. The unit responds as follows:

 ![Idle Screen]

 Once the internal diagnostic tests are complete, the following **Idle Screen** is displayed:

 ![Idle Screen with data]

 ![Idle Screen with data]

 ![Idle Screen with data]
NOTE: The Display on your WDL III may vary based on the values set for Date, Time, Printer Status, ETM, Sensors Enabled and Temperature Display Enabled in the WDL III.

2.2 CURRENT SENSOR INSTALLATION

The Current Sensor assembly consists of a Hall-Effect clamp on device and a cable assembly for connection to the unit. The Current Sensor should be installed around the negative welding cable lead from the power supply. The two “RED DOTS” on the sensor should be oriented toward the most positive potential. The location of the sensor is not critical and the welding cables may be as long as required for the application.

2.2.1 CURRENT SENSOR CABLE INSTALLATION

The Current Sensor is supplied with a 6 meter cable. To connect the sensor cable to the unit, locate the connector labeled “AMPS” on the rear of the unit chassis. Insert the plug into the “AMPS” connector and rotate cable connector so that the cable connector “KEY” matches the “KEY SLOT” in the WDL III AMPS connector. Rotate the cable connector barrel clockwise to secure it into the WDL III AMPS connector.

NOTE: Do Not Roll excess cable length in a circle. If the sensor cable is too long for the application loop excess cable in an “S” shape and tie it in the center. Install the sensor cable with as much distance from the Power Source Welding Cables as possible.

2.3 VOLTAGE SENSOR CABLE INSTALLATION

The Voltage Sensor Cable assembly consists of a 6 meter cable assembly with a Positive (+) lead connection and a Negative (-) lead connection for ARC Voltage Sensor.

The Voltage Sensor Cable has two leads, one RED and one BLACK, to facilitate the connection of the sensor to the welding system. Connect the ELECTRODE lead as close to the welding torch as possible in order to assure proper ARC Voltage measurement (See Application Table). Connect the leads to the appropriate location indicated in the table below. If the connections provided on the Voltage Sensor Cable leads are not suitable, any appropriate connector can be used. If the lead lengths are not the required length, they may be shortened or lengthened using the appropriate wire type.
See Application Table.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>RED (+) LEAD</th>
<th>BLACK (-) Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW</td>
<td>Electrode</td>
<td>Work</td>
</tr>
<tr>
<td>P-GMAW</td>
<td>Electrode</td>
<td>Work</td>
</tr>
<tr>
<td>GTAW</td>
<td>Work</td>
<td>Electrode</td>
</tr>
<tr>
<td>P-GTAW</td>
<td>Work</td>
<td>Electrode</td>
</tr>
<tr>
<td>SMAW (Rev. Pol)</td>
<td>Electrode</td>
<td>Work</td>
</tr>
<tr>
<td>SMAW (St. Pol.)</td>
<td>Work</td>
<td>Electrode</td>
</tr>
<tr>
<td>FCAW</td>
<td>Electrode</td>
<td>Work</td>
</tr>
<tr>
<td>PAW</td>
<td>Work</td>
<td>Electrode</td>
</tr>
<tr>
<td>P-PAW</td>
<td>Work</td>
<td>Electrode</td>
</tr>
<tr>
<td>SAW</td>
<td>Electrode</td>
<td>Work</td>
</tr>
</tbody>
</table>

2.3.1 VOLTAGE SENSOR CABLE INSTALLATION

To connect the Voltage Sensor Cable to the WDL III, locate the connector labeled “VOLTS” on the rear of the unit chassis. Insert the cable plug into the “VOLTS” connector and rotate cable connector so that the cable connector “KEY” matches the “KEY SLOT” in the WDL III VOLTS connector. Rotate the cable connector barrel clockwise to secure it into the WDL III VOLTS connector.

NOTE: If welding using a High Frequency (HF) ARC Start you must order the Voltage Sensor cable with the in-line filter for use with a HF ARC Start.

WARNING

Failure to use the correct Voltage Sensor cable will cause damage to the WDL III and VOID the WDL III Warranty.

2.4 GAS FLOW INSTALLATION

The Gas Flow option consists of a transducer assembly (the GFM) and a sensor cable. The unit is designed to measure gas flows with a maximum inlet pressure of 50 psi. The transducer should be installed with supplied fittings, in the welding shielding gas lines, on the outlet side of the gas control solenoid valve. The unit should be located as close to the welding torch as practical.

NOTE: To avoid damage to the transducer assembly, do not use any type of pipe dope when making the connection.

The transducer should be placed as far as possible from any source of high frequency interference, such as a GTAW welding power supply.

2.4.1 GAS FLOW CABLE INSTALLATION

To connect the Gas Flow Sensor cable to the WDL III, locate the connector labeled “GAS” on the rear of the unit chassis. Insert the Cable plug into the “GAS” connector and rotate cable connector so that the cable connector “KEY” matches the “KEY SLOT” in the WDL III GAS connector. Rotate the cable connector barrel clockwise to secure it into the WDL III GAS connector.
2.5 WIRE SPEED TRANSDUCER INSTALLATION

The Wire Feed Speed transducer consists of an optical tachometer, a precision drive wheel, a mounting housing, and a control cable. This device is designed to be placed directly on the welding wire. A fixed or stationary mounting of the wire feed speed transducer to the wire feeder is the required method of installation. The transducer is electrically isolated from the welding electrode so the transducer can be mounted to any part of the wire feeder.

NOTE: Make sure when permanently mounting the transducer on the wire feeder that the inlet and outlet of the transducer are in line with the wire guides of the wire feeder.

An optional clip-on wire speed transducer can be purchased and installed by simply clamping it over the welding wire at some point prior to where the wire enters the wire feeder. This device is designed to clamp directly on the welding wire and can be installed without the removal of the welding wire from the wire feeder during installation. To install the wire speed transducer using this method, simply depress the handle on the top of the transducer, slip the assembly over the wire, and release the handle.

2.5.1 WIRE SPEED TRANSDUCER CABLE

To connect the Wire Feed Speed Transducer cable to the WDL III, locate the connector labeled “WIRE” on the rear of the unit chassis. Insert the cable plug into the “WIRE” connector and rotate cable connector so that the cable connector “KEY” matches the “KEY SLOT” in the WDL III WIRE connector. Rotate the cable connector barrel clockwise to secure it into the WDL III WIRE connector.

2.6 TRAVEL SPEED TRANSDUCER INSTALLATION

The Travel Speed Transducer assembly consists of a tachometer that measures the travel speed of the welding torch and a cable assembly. The sensor is a surface contact device supplied with a spring-loaded hinge to ensure proper surface tension. The hinge provides for a +20 to -10 degree movement of the transducer with respect to the drive carriage of the torch. In order to ensure accurate measurement, the transducer must be rigidly mounted on the drive carriage with the drive wheel perpendicular to the drive surface. The Drive Surface must be smooth and flat with no obstructions to the contact wheel of the Travel Speed Sensor. The Sensor Wheel is a surface contact device and must be located away from the heat produced by the welding process.

2.6.1 TRAVEL SPEED TRANSDUCER CABLE INSTALLATION

To connect the Travel Speed Transducer cable to the WDL III, locate the connector labeled “TRAVEL” on the rear of the unit chassis. Insert the cable plug into the “TRAVEL” connector and rotate cable connector so that the cable connector “KEY” matches the “KEY SLOT” in the WDL III TRAVEL connector. Rotate the cable connector barrel clockwise to secure it into the WDL III TRAVEL connector.

2.7 TEMPERATURE SENSOR INSTALLATION

The WDL III has two Temperature Sensor options:
2.7.1 INFRARED SENSOR

The Sensor consists of an electronics module that processes information gathered by the IR sensor and provides appropriate input to the WDL III. Refer to manufacturer's manual for IR Sensor installation.

2.7.2 THERMOCOUPLE SENSOR

The Sensor consists of an enclosure for housing the necessary electronics to convert collected data to a useable signal for input to the WDL III and a sensor cable. The user supplies the appropriate contact sensor probe (Thermocouple Wire, Type “K”, Type “J”, or Type “T” depending on desired temperature range). The selected “Type” of contact sensor probe (Thermocouple Wire) must be attached to the point on the work piece from which temperature data is desired.

2.7.3 TEMPERATURE SENSOR CABLE INSTALLATION

To connect the Temperature Sensor to the Weld Data Logger with the supplied 6m cable, the following is required:

INFRARED SENSOR - Connections on the sensor end of the cable are made to the numbered terminal strip on the electronics module. To connect the sensor cable to the unit, locate the connector labeled “TEMP” on the rear of the unit chassis.

THERMOCOUPLE - The Thermocouple Sensor is supplied with a 6m cable. To connect the sensor cable to the unit, locate the connector labeled “TEMP” on the rear of the unit chassis.

2.8 PRINTER INSTALLATION

The WDL III system is designed for use with any standard Serial Printer Interface. The WDL III only prints in a 40 column configuration. An 80 column printer with a Serial Printer Interface can be used with the WDL III but will only print in 40 column mode.

To connect the printer to the WDL III, insert the printer serial cable into the Printer Port on the connector panel.

Connect the Printer end of the cable to the Printer Serial connection.

Connect the printer power supply to a 115 VAC power source.

Consult the Printer Operators Manual for paper and ribbon installation procedures.

Apply power to the printer by setting the ON / OFF switch to ON.

Enable the WDL III Print Function in the SETUP PARAMETERS Sub Menu.
2.9 REMOTE I/O CABLE INSTALLATION

The Remote I/O Cable provides the user with Remote Control ARC ON Inputs, Control Ready and ARC status outputs from the WDL III. The cable provides the following features:

3–24 VDC Inputs

- **Input 1** – Remote ARC Off Input (Used In conjunction with Auto ARC Detect) Will terminate the data collection (ARC OFF) when set high. Auto ARC Detect must be set to YES for this function.

- **Input 2** – Remote ARC ON Input (Used as substitute for Auto ARC Detect) Will activate the data collection (ARC ON) when set High and Terminate data collection (ARC OFF) when set Low. Auto ARC Detect must be set to NO for this function.

- **Input 3** – Not Defined (for Future use)

- Remote Input COM

3–24VDC Outputs

- **Output 1** – Control Ready (Active High at Power ON)

- **Output 2** – ARC Active (Active High during ARC ON Status)

- **Output 3** – Not Defined (for Future use)

- Remote Output COM

Typical Remote I/O Cable Installation
3.0 WDL III SETUP

Prior to using the WDL III the operator must set the Modes and Parameters in the WDL III so the unit captures the data in the desired manner.

The WDL III has two SUB MENUS for setting these features and they are accessed using the WDL III display. The two SUB MENUS are the WELD PARAMETERS Menu and the SETUP PARAMETERS Menu.

3.1 ALTER MODE SUB MENU SCREENS

To enter the SUB MENUS using the Display press the "ALTER" key.

Press the ALTER BUTTON

The WELD PARAMETER Menu

To move between the two menus use the INC / YES or the DEC / NO Buttons

The SETUP PARAMETERS Menu

To Enter a Menu for editing, press the SELECT Button.

The ALTER button is also the EXIT button when in the ALTER Mode.
3.2 EDIT MENU PARAMETERS

Use the following procedure to change any MENU PARAMETER:

After the desired SUB MENU is selected, use the **INC / YES** or the **DEC / NO** Buttons to move between the Parameters in the menu.

The WELD PARAMETER MENU:

Press the “SELECT” button to enter the WELD PARAMETERS menu.

The ARC ON AMPS Parameter value will display

To **change any of the parameter values** on any screen perform the following procedure:

1. Press the “SELECT” Button and a FLASHING Cursor will appear to the right of the parameter value.

2. Use the **INC / YES** or the **DEC / NO** Buttons to change the Parameter Value. If the **INC / YES** or the **DEC / NO** Buttons are pressed and held the value will change slowly for the first 2 seconds and then rapidly until the button is released.

3. Once the desired value is displayed press the “SELECT” button and the value is saved in the WDL III.

4. A Parameter with a “YES” or “NO” value is changed in the same manor.

5. Press the “SELECT” Button and a FLASHING Cursor will appear to the right of the “YES / NO” parameter value.

6. Use the **INC / YES** or the **DEC / NO** Buttons to change the Parameter Value.

7. Press the “SELECT” Button to SAVE the value in the WDL III.
3.3 FUNCTION AND DESCRIPTION OF MENU PARAMETER SCREENS

The PARAMETERS found in the WELD PARAMETERS MENU:

- **ARC ON AMPS**

 "ARC ON AMPS =" The actual welding ARC Current must be greater than this value as part of the “AUTO ARC ON” feature of the WDL III. The ARC is “OFF” when the Current drops below this value. (See Section 4 Weld Monitoring for full ARC ON / ARC OFF description.)

- **ARC ON VOLTS**

 "ARC ON VOLTS =" – The actual welding ARC Voltage must be greater than this value as part of the “AUTO ARC ON” feature of the WDL III. The ARC is “OFF” when the Voltage drops below this value. (See “Chapter 4 Monitoring Welding Data” for full ARC ON / ARC OFF description)

- **MIN WELD TIME**

 "MIN WELD TIME =" – This value specifies the minimum Welding ARC Time required to accept and store the data in memory as a valid weld. If the arc time is less than this value the weld counter will not increment and the data will not be summarized or totaled. This value should be set to a value less than the actual weld time. Setting the value to zero will allow all
ARC ON conditions to increment the weld and summary counter and store the data in memory. (Welding ARC Time = ARC ON to ARC OFF)

- PRINT CYCLE TIME

“PRINT CYCLE TIME =” – Specifies the time between print cycles when the “PRINT ALL” mode set to “YES”. The time is in seconds and the minimum time is 1 second. The Data printed is an AVERAGED data sample for the data collected between print cycles.

- DEFAULT TRAVEL

“DEFAULT TRAVEL =” – The Default Travel Speed is used when a Travel Speed Sensor is not practical for the welding application (such as Manual Stick Electrode Welding). When the Travel Speed Sensor is disabled (set to “NO”) the WDL will use this value to calculate the heat input values when the HEAT Sensor is enabled (set to “YES”). Set the Default Travel to .0 when a weld length is used to calculate heat input for totalized welds.

- TRAVEL SPEED SCALE

“TRAVEL SPEED SCALE =” - This is a conversion factor used to convert the Travel Speed Sensor reading to actual welding Travel Speed if the sensor cannot be driven from the actual
weld surface. To calculate the conversion factor use the following equation:

\[\text{TVS SPEED SCALE} = \frac{\text{Diameter of actual Weld}}{\text{Diameter of measured surface}} \]

- **WELD LENGTH**

"WELD LENGTH =" - The Weld Length is used in lieu of a Travel Speed Sensor or a Default Travel Speed for calculating the HEAT parameter for a weld or group of welds when using the Totalize Welds Function. The WDL III uses the ARC Time and the Weld Length to calculate a Travel Speed.

- **SUMMARY COUNT**

"SUMMARY COUNT =" - Indicates the number of Weld Summaries that are stored in memory. **Maximum number is 2000 welds.** The WDL III will stop saving Weld Summaries once the maximum number is reached. To reset the counter use the "CLEAR SUMMARY" Parameter in the "SETUP PARAMETERS" Menu.

- **TOTALIZE COUNT**

"TOTALIZE COUNT =" - Indicates the number of Totalized Weld Summaries that are stored in memory. **Maximum number is 100 welds.** The WDL III will stop saving Totalized Weld
Summaries once the maximum number is reached. To reset the counter use the “CLEAR TOTALS” Parameter in the “SETUP PARAMETERS” Menu.

- **WELD COUNT**

 "WELD COUNT =" - Number of "Valid Welds" made (See Section 4 Weld Monitoring for description of "Valid Weld"). The Weld Count is displayed on the WDL III Idle Screen and it is saved and printed with the weld summary and actual weld data. The counter is sequential. The Count starts with 0, after being reset and has a Maximum number of 62500. When the counter reaches the Maximum number it will roll over to 0 and start counting up again. The user can set the Weld Count value to any desired number from 0 – 62500. To reset the counter use the “CLEAR WELD COUNT” Parameter in the “SETUP PARAMETERS” Menu.

- **READ RECORD NUMBER**

 "READ RECORD NUMBER =" – To view a Weld Summary stored in memory, enter the Summary Number using the INC / YES or DEC / NO button, press the Select Button and then the ALTER Button. The Summary Data for the selected record is displayed in the Weld Summary Screen of the WDL III.

 NOTE: The “SAVE SUMMARY” Parameter in the “SETUP PARAMETERS” Menu must be set to “YES” to use this function.
• READ TOTALIZED WELD

READ TOTALIZED WELD = – To view a TOTALIZED Weld Summary stored in memory, enter the TOTALIZED Weld Number using the INC / YES or DEC / NO button, press the Select Button and then the ALTER Button. The Summary Data for the selected record is displayed in the Weld Summary Screen of the WDL III.

NOTE: The *“SAVE TOTAL” Parameter in the “SETUP PARAMETERS” Menu must be set to “YES” to use this function.*

• READ SUMMARY WELD

READ SUMMARY WELD = – To a Saved Weld Summary stored in memory, enter the SUMMARY Weld Number using the INC / YES or DEC / NO button, press the Select Button and then the ALTER Button. The Summary Data for the selected record is displayed in the Weld Summary Screen of the WDL III.

NOTE: The *“SAVE SUMMARY” Parameter in the “SETUP PARAMETERS” Menu must be set to “YES” to use this function.*
The PARAMETERS found in the **SETUP PARAMETERS** MENU:

- **PRINT ENABLED**

 “PRINT ENABLED =” – This parameter turns the Print Data Function ON (YES) and OFF (NO).

- **PRINT ALL**

 “PRINT ALL =” – This parameter turns the Print ALL Weld Data Function ON (YES) and OFF (NO). When this parameter is set to “YES”, the WDL III will print weld data samples during the weld at the set “PRINT CYCLE TIME” Value and a Weld Summary Report at ARC OFF. When this parameter is set to “NO”, the WDL III will only print a Weld Summary Report at ARC OFF.

- **SAVE SUMMARY**

 “SAVE SUMMARY =” – This parameter turns the SAVE WELD SUMMARY DATA to memory ON (YES) and OFF (NO). When set to “YES” the WDL III will store the Weld Summary Record Data for each weld to memory (MAX number of Summary Welds = 2000).
• **SAVE TOTALS**

“SAVE TOTALS =” – This parameter turns the SAVE TOTALIZED WELDS DATA to memory ON (YES) and OFF (NO). When set to “YES” the WDL III will store the Totalized Weld Summary Data to memory (MAX number of Totalized Weld Summaries = 100).

• **CLEAR WELD COUNT**

“CLEAR WELD COUNT =” – This parameter resets the WDL III Weld Counter to “0” when set to YES.

• **CLEAR SUMMARY**

“CLEAR SUMMARY =” – This parameter resets the WDL III Summary Welds Counter to “0” when set to YES. This will CLEAR (Delete) ALL saved Weld Summaries in Memory.
• CLEAR TOTALS

“CLEAR TOTALS =” – This parameter resets the WDL III Totalized Welds Counter to “0” when set to YES. This will CLEAR (Delete) ALL saved Totalized Welds in Memory.

• CLEAR ARC TIMER

“CLEAR ARC TIMER =” – This parameter resets the WDL III ARC Timer to “0” when set to YES.

• ENABLE AUTO ARC DETECT

“ENABLE AUTO ARC DETECT =” – When set to “YES” the WDL III will use the ARC ON VOLT and ARC ON AMP values to determine that a Weld ARC is initiated and start logging weld data. When the values received from the volt and current sensor reach or exceed the set ARC ON values the WDL III will set ARC ON. When the values received from the volt and current sensor drop below the set ARC ON values the WDL III will clear the ARC ON and stop logging data.

When set to “NO” the WDL III will set the ARC ON based on the Remote ARC ON Input received through the Remote I/O Cable.
NOTE: THIS SECTION OF THE SETUP PARAMETERS IS USED TO TURN SENSOR FUNCTIONS ON(YES) AND OFF(NO). ONLY ENABLE SENSORS THAT ARE CONNECTED TO THE WDLIII.

- **ENABLE VOLTS**

 "ENABLE VOLTS =" – This parameter enables the WDL III Voltage Sensor when set to YES. The Letter "V" will display on the WDL III Idle Screen to indicate the sensor is enabled.

- **ENABLE AMPS**

 "ENABLE AMPS =" – This parameter enables the WDL III Current Sensor when set to YES. The Letter "A" will display on the WDL III Idle Screen to indicate the sensor is enabled.

- **ENABLE WIRE**

 "ENABLE WIRE =" – This parameter enables the WDL III Wire Speed Sensor when set to YES. The Letter "W" will display on the WDL III Idle Screen to indicate the sensor is enabled.
• **ENABLE TRAVEL**

 "ENABLE TRAVEL =" – This parameter enables the WDL III TRAVEL SPEED Sensor when set to YES. The Letter "T" will display on the WDL III Idle Screen to indicate the sensor is enabled.

• **ENABLE GAS**

 "ENABLE GAS =" – This parameter enables the WDL III GAS FLOW Sensor when set to YES. The Letter "G" will display on the WDL III Idle Screen to indicate the sensor is enabled.

• **ENABLE TEMP**

 "ENABLE TEMP =" – This parameter enables the WDL III TEMPERATURE Sensor when set to YES. The Letter "D" will display on the WDL III Idle Screen to indicate the sensor is enabled. The WDL III can use INFRARED and K, J and T THERMOCOUPLE Sensors.
• **ENABLE HEAT**

"ENABLE HEAT =" – This parameter enables the WDL III HEAT Calculation when set to YES. The Letter “H” will display on the WDL III Idle Screen to indicate the Calculation is enabled. The HEAT parameter is calculated in K joules/inch based on the voltage, current, and travel speed inputs according to the following formula:

\[
\text{HEAT INPUT} = \frac{\text{((VOLT)(AMP)(60))}}{\text{((TRAVEL)(1000))}} \quad \text{(ASME Sec IX QW-409.1(a))}
\]

• **ENABLE POWER**

"ENABLE POWER =" – This parameter enables the WDL III POWER Calculation when set to YES. The Letter “P” will display on the WDL III Idle Screen to indicate the Calculation is enabled. The POWER Value is calculated in Joules based on the voltage, current, and ARC Time inputs according to the following formula:

\[
\text{POWER INPUT} = \text{Power (KJoules)} = \frac{\text{(Volt x Amp x ARC TIME(s))}}{1000} \quad \text{(ASME Sec IX QW-409.1(c)(2))}
\]

• **ENABLE IR SENSOR**
“ENABLE IR SENSOR =” – This parameter enables the WDL III IR Sensor when set to YES. If a THERMOCOUPLE Sensor is used with the WDL III set this Parameter to “NO”.

- **A0A0182 TRAVEL SENSOR**

 “A0A0182 TRAVEL SENSOR =” – If the A0A0182 Travel Speed Sensor was purchased for use with the WDL III; set this parameter to “YES”.

- **ENABLE METRIC**

 “ENABLE METRIC =” – This parameter enables the WDL III METRIC Conversion when set to YES. The display and recorded data of the Wire Feed Speed, Travel Speed, Gas Flow, Temperature Sensors and Heat Calculation values will be in metric.

- **RTC HOUR**

 “RTC HOUR =” – This parameter sets the Real Time Clock Hour (RTC). The RTC is a 24 hour clock.
• **RTC MINUTE**

```
RTC MINUTE = 26
```

“RTC MINUTE =” – This parameter sets the Real Time Clock Minute.

• **RTC SECOND**

```
RTC SECOND = 59
```

“RTC SECOND =” – This parameter sets the Real Time Clock Second.

• **RTC MONTH**

```
RTC MONTH = 11
```

“RTC MONTH =” – This parameter sets the Real Time Clock Month.
• **RTC DAY**

“RTC DAY =” – This parameter sets the Real Time Clock Day.

• **RTC YEAR**

“RTC YEAR =” – This parameter sets the Real Time Clock YEAR.

• **STATION ID**

“STATION ID =” – This parameter sets the WDL III Station ID Number. This number is saved with Summary and Totalized Weld Data. The Station ID is numeric only and is used to differentiate data from multiple WDL III units at the same location. Each WDL III should have a different ID number. The Station ID number range is 0 – 65535.
• **DEVICE ID**

“DEVICE ID =” – This parameter sets the Device ID used in Modbus communications protocol. If multiple devices are on a network each unit must have an individual ID for communications. (ID number range is 1 – 247)

• **ENABLE DEG DISPLAY**

“ENABLE DEG DISPLAY =” – When set to “YES” the Temperature is displayed on the main Idle Screen of the WDL III when not welding. This feature will not affect Temperature Data collected while logging during an ARC ON Condition. The Thermocouple or IR Sensor must be installed for this feature.

• **IDLE SCREEN DISPLAY WITH DEG DISPLAY ENABLED**
4.0 WELD MONITORING

Once the INSTALLATION and SETUP procedures are complete the WDL III is ready to collect, display and store weld data. After power up, the WDL III will display the Idle Screen. From the Idle Screen you have the ability to access the LAST Weld Summary Screen, the TOTAL (Totalize) Welds Screen and the PRINT (Manual Print) Function.

- THE IDLE SCREEN

The IDLE Screen displays the DATE and TIME, Printer Status (ON/OFF), TOTAL WELD ARC TIME (ETM:0:00.0) and sensors enabled. The “LAST” Weld Summary will always display even if no welds have been collected and stored in memory. The “TOTAL” will display once a weld summary has been saved to memory. The “PRINT” will display only when the PRINT function is enabled (YES).

“LAST” button – The LAST button will display the Weld Summary from the “LAST” weld collected. It is also used when a Weld Summary or Totalized weld is read from memory using the “READ” Functions in the WELD PARAMETERS Sub Menu.

“PRINT” button – The PRINT button will print the data loaded in the “LAST” screen.

“TOTAL” button – The TOTAL button provides access to the Totalize Weld(s) function. See Section 4.4 Totalize Weld Data.

4.1 ARC DETECT (ARC ON / ARC OFF)

WELD ARC DETECT (ARC ON)

For the WDL III to start collecting it must detect a Welding ARC ON condition. There are three ways to set the ARC ON conditions for the unit. (ARC ON Detect Parameters are found in the Weld Parameters Sub Menu. See Section 3 WDL III SETUP.)

ARC ON DETECT with VOLT and AMPS: The normal configuration for the WDL III ARC ON Detect is with both Voltage and Current minimum values set for a Stable ARC ON Condition. In this mode the Voltage and AMP Sensors are enabled (YES) and the ARC ON AMPS, ARC VOLTS and MIN WELD TIME are set to a user specified level. The WDL III Default values are:

ARC ON AMPS = 10 amps
ARC ON VOLTS = 5.0 volts
MIN WELD TIME = 1.5 sec

These parameter values require that the Weld ARC AMPS are above 10 AMPS, the ARC VOLTS are above 5.0 VOLTS and that they remain above those values for greater than 1.5 Seconds. Once these three conditions are met the WDL III will log and store the Welding ARC Data.
ARC ON DETECT with VOLTS ONLY: The user can set the WDL III to use the ARC ON VOLTS parameter only to detect an ARC ON Condition. In this configuration the ARC ON AMPS Parameter value is SET to 0 (zero). The WDL III will use the ARC ON VOLTS Parameter value and the MIN WELD TIME Parameter value to determine ARC ON. Once these two conditions are met the WDL III will log and store the Welding ARC Data.

ARC ON DETECT with AMPS ONLY: The user can set the WDL III to use the ARC ON AMPS parameter only to detect an ARC ON Condition. In this configuration the ARC ON VOLTS Parameter value is SET to 0 (zero). The WDL III will use the ARC ON AMPS Parameter value and the MIN WELD TIME Parameter value to determine ARC ON. Once these two conditions are met the WDL III will log and store the Welding ARC Data.

NOTE: Setting the ARC ON VOLTS and ARC ON AMPS to 0 (zero) will place the WDL III into a continuous ARC ON Condition. This is not a recommend or valid weld data collection method.

ARC OFF occurs when the Welding Volts and AMPS drop below the ARC ON VOLTS and AMPS value.

4.2 WELD DATA SCREEN

WELD DATA SCREEN

At ARC ON the Weld Data Screen will appear.

The Weld Data Screen will only display the data from the sensors that are enabled. The ARC TIME is displayed at the bottom of the screen.

4.3 MONITORING WELDING DATA

At ARC OFF The Weld Summary Screen will display.
The Weld Summary Screen displays the:

Weld ID (Weld Count). The Weld ID Counter is a sequential counter starting with 0 counting up to 62500. When the counter reaches the maximum number it will reset to 0 and start counting up again. Use the CLEAR WELD COUNT parameter in the SETUP PARAMETERS Sub Menu to reset the Weld ID to 0.

DATE and TIME stamp is the ARC ON (or ARC START) date and time for each weld.

The enabled Sensor Averaged data for the weld by parameter with the exception of time.

TIME is the total ARC TIME from ARC On to ARC OFF.

The **EXIT** button will return to the Idle Screen.

The Data Displayed in the Weld Summary Screen will remain on the screen until another valid welding ARC is detected or a Weld Summary or Totalized Weld is read from memory.

4.4 TOTALIZE WELD DATA

TOTALIZE WELDS SCREEN

When the **TOTAL** button is displayed on the screen the operator has the option to totalize the Weld Summaries in memory into a single Totalized Weld Summary. Maximum number of welds that can be Totalized is 2000 Weld Summaries.

To enter the Totalize Function press the **TOTAL** button on the WDL III IDLE or SUMMARY Screen. There are five Totalize Weld SETUP Screens. Use the INC/DEC buttons to move between screens.

- **PRINT ENABLED Screen**

If a Printer is used for data retrieval set the PRINTER ENABLE to YES by pressing the SELECT button then the INC/DEC to make a change and then press the SELECT button to save the change.
• SAVE TOTALS Screen

To Save the TOTALIZED Data to memory in the WDL III set the SAVE TOTALS to YES by pressing the SELECT button then the INC/DEC to make a change and then press the SELECT button to save the change.

• MEMORY COUNT Screen

The MEMORY COUNT displays the number of weld summaries in memory for totalizing.

• DEFAULT TRAVEL Screen

The DEFAULT TRAVEL is used when no Travel Speed Sensor is present or enabled. The Default Travel Speed entered is used to calculate HEAT when the HEAT PARAMETER is enabled.
WELD LENGTH

The WELD LENGTH is used to calculate the travel speed when the Travel Speed Sensor is not present or enabled and no Default Travel Speed is entered. The calculated Travel Speed used to calculate HEAT when the HEAT PARAMETER is enabled.

Once the TOTALIZE WELD DATA Screens are setup, press the TOTAL button to totalize the data.
5.0 COMMUNICATIONS MODBUS MEMORY MAP

5.1 GENERAL DESCRIPTION

This document provides the basic Modbus memory map and command structure for the WDL III RS-485 communications port. The WDL III supports the Modbus Protocol as specified in the Modicon Technical publications "Modbus Protocol" (intr7.html). The WDL III control does not support the Broadcast mode. The controller provides the slave side communications routines for the RTU mode. The user must define the Slave ID to a unique ID number from 1 – 247. Default Baud rate is 19.2 K baud.

5.2 SUPPORTED MODBUS COMMANDS

The following ModBus commands are supported:

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>ADDRESS RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Read Coil Status</td>
<td>0-31</td>
</tr>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
<td>0-21</td>
</tr>
<tr>
<td>05</td>
<td>Force Single Coil</td>
<td>0-15</td>
</tr>
<tr>
<td>06</td>
<td>Preset Single Register</td>
<td>0-21</td>
</tr>
<tr>
<td>15</td>
<td>Force Multiple Coils</td>
<td>0-15</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
<td>0-21</td>
</tr>
<tr>
<td>17</td>
<td>Report Slave ID</td>
<td>5 bytes</td>
</tr>
</tbody>
</table>

5.3 MEMORY MAP FOR SENSOR

The following is the Coil definitions address 0-31:

<table>
<thead>
<tr>
<th>COIL</th>
<th>ADDRESS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Arc Active – Set when Weld Arc is detected</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Save Average Data – When set Weld Summary Data is stored in NVRAM</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Clear Weld Counter – When set the Weld Counter will be reset to 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Clear Summary Counter – When set the Average Data Counter is reset to 0 and Average Memory is cleared</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Clear Arc Timer – When set the Accumulative Arc Timer is reset to 0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Disable Auto Arc Detect – When set the Arc On condition must be set by the user supplied input CR1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Read Memory – When set the Weld Summary data specified by Register 19 will be read into Register 2-12. Coil will be reset when summary has been loaded. Function is executed only when the arc is off.</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>Set Clock – When set the Date and Time values set in Register 7 – 12 will be loaded to the Real Time Clock. The Coil will be reset after the RTC is set. This function will only execute when the arc is off.</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Enable Metric units of measure (1 = Metric, 0 = Imperial)</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>Print Enabled (1 = On, 0 = Off)</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Save Totalized Data to Memory (1 = On, 0 = Off)</td>
</tr>
<tr>
<td>REGISTER</td>
<td>ADDRESS</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Arc On Status – When the arc is active the value will be 1 when the arc is off the value will be 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Arc Time – Weld on timer in 0.1-second intervals. Value is incremented during a weld cycle and measures the Arc On time for each weld. When the weld cycle is complete the total time for the weld will be set. (Note 100 = 10.0 sec)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Volts – During the Arc on Time the value represents the actual arc voltage. The value is in 0.1-volt increments (100=10.0 volts). When the weld cycle is complete the value will be the statistical average for the last weld.</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Amps- – During the Arc on Time the value represents the actual arc current. The value is in 1amp increments (100=100 amps). When the weld cycle is complete the value will be the statistical average for the last weld.</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Gas Flow – – During the Arc on Time the value represents the actual Flow rate. When the weld cycle is complete the value will be the statistical average for the last weld.</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Temperature</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Arc Power #.### Kj</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>Heat Input #.### Kj / in</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Travel</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>Wire Speed - – During the Arc on Time the value represents the actual wire feed speed. The value is in 1-mm/sec increments (100=100 MM/Sec). When the weld cycle is complete the value will be the statistical average for the last weld.</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Arc Time MSB byte</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>Start Weld Time in BCD SEC:MIN format</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>Start Weld Time in BCD HR:DATE format</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>Start Weld Time in MONTH:YEAR format</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>Sequential Weld ID number</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>Read stored Weld Record Number</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>Total number of stored weld records in memory</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>Total ARC Hours from last reset</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>Total ARC Minutes:Seconds from last reset</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>ARC On Amps</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>ARC On Volts</td>
</tr>
</tbody>
</table>

The following is the Register definitions address 0-26:
The following is a summary of the Report Slave ID and Status (Code 17) Response Data fields:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensor ID Number =10 Hex (Version 1, Rev0)</td>
</tr>
<tr>
<td>2</td>
<td>Run Indicator (0=OFF, FF=On)</td>
</tr>
</tbody>
</table>
| 3 | Status Byte
| | Bit 0 = Ram Full
| | Bit 1 = Battery Ok
| | Bit 2 = Self Test Ok
| | Bit 3-7 = 0 |
| 4 | Firmware Version Number – BCD Format (MSB = Major; ISB = Minor) |
| 5 | Firmware Version Number – BCD Format (MSB+LSB = Release) |

5.4 COIL DEFINITIONS AND OPERATION

The WDL III has 32 simulated output coils. These coils are used as internal bit flags to perform specific functions. Only 1-19 of the simulated coils is used. Setting the coils 20-32 will not have any effect on the WDL III controller. However, they are reserved for future expansion. The WDL III supports both single and group force coil commands. Refer to Section 5.3 Memory Map for Sensor for summary of the Coil functions.

To clear the WDL III weld and average counters or reset the total arc timer, force the specific coil to the “ON” condition. The WDL III will clear the requested counter or timer and then reset the coil to the “OFF” condition signifying a successful operation.

To disable the auto arc on detection mode force coil 6 to the “OFF” condition. When reset the WDL III will only log data when the remote on input CR1 is asserted. To allow normal arc on detection Coil 6 must be in the “ON” condition.

To set the Real time clock perform the following steps:

1. Set Coil 6 to the “ON” condition to disable automatic arc detection.
2. Load the BCD formatted Time and Date into the value Registers 6-12.
3. Set Coil 8 to the “ON” condition. The WDL III will clear the coil after completing the function.
4. Enable Coil 6 to resume automatic arc detection.

To read stored weld data summaries, perform the following steps:

1. Set Coil 6 to the “ON” condition to disable automatic arc detection.
2. Load the desired weld summary number into Registers 19. This value must be equal to or less than the total number of saved welds as indicated by Register 17.
3. Set Coil 2 to the “ON” condition. The WDL III will load the stored data into Registers 2-12 and will clear the coil after completing the function. The data will remain in the register until the next arc on or stored weld request.

4. Enable Coil 6 to resume automatic arc detection.

5.5 REGISTER DEFINITIONS

Register 1: Used to indicate when a welding arc has been detected. When this register is a 1 the WDL III controller is updating the welding parameters with new measured values.

Register 2–6: Contains the current value for each of the welding parameters: The following table shows the value and units of measure for each weld parameter register:

<table>
<thead>
<tr>
<th>REGISTER</th>
<th>MEASURED PARAMETERS</th>
<th>UNITS OF MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Arc On time – Time in 0.1 seconds from arc detection</td>
<td>(Value /10) sec.</td>
</tr>
<tr>
<td>3</td>
<td>Arc Voltage – Voltage measured by Volt sensor</td>
<td>(Value/10) vdc</td>
</tr>
<tr>
<td>4</td>
<td>Arc Current – Welding amps measured by Hall Sensor</td>
<td>Value = Amps DC</td>
</tr>
<tr>
<td>5</td>
<td>Gas Flow Rate – Shielding Gas flow from GTFM sensor</td>
<td>Value = CFH (lpm)</td>
</tr>
<tr>
<td>6</td>
<td>Wire Speed – Linear wire speed measured by encoder</td>
<td>Value = In/Min (mm/sec)</td>
</tr>
</tbody>
</table>

When the Arc is in the off condition the Registers will display the statistical average for the last weld.

Register 7-12: Contains the Time and Date at the start of the last weld. These registers will only update when a new weld is detected or a weld summary is loaded from memory. The Time and Date parameters are in BCD format. The low nibble is the 1’s units and the upper nibble is the 10’s units. Only the lower byte is used for all parameters except the year. The MSB byte holds the BCD value for the century value.

 Note: When setting the Real time Date and Time the values loaded into the Registers 6-12 must be in a BCD format.

Register 13–15: Used to indicate the accumulative arc time. The value is an integer value and represents the total arc on time since the last reset. At the end of each weld the accumulated arc timer will be updated. Writing to these registers will have no effect on the total arc time. When the next weld occurs the new value will be written.

Register 16: The current weld count since the last weld count reset. This counter is incremented when the total arc time for a weld is greater than 0.5 seconds. This prevents false arc starts from being counted as a valid weld.

Register 17: Indicates the number of weld summaries stored in the weld memory. The maximum number of welds stored is 1365. Writing a new value to this register will cause the next collected weld to be written to that weld number location. The Welds will only be saved if the Save Weld Summary Coil 2 has been set and the minimum weld time is greater than 0.5 seconds.
Register 18: This register sets the number of raw data points to be averaged to generate a single sampled value. The minimum value is 1 and the maximum value is 255. Setting this value to 0 will disable the Analog Data collection routines.

Register 19: This register is used to read a previously stored weld summary from memory. Set the desired weld summary number in this register then set the Read Weld Memory Coil 7. The value will be written to Register 2 – 12. Maximum value is 1365.

Register 20-21: These registers are used to specify the conditions required to establish an arc on signal. To set the auto arc on signal the Voltage and Current sensor values must exceed both values stored in the these registers. If any single sensor input drops below this level the arc on signal will be reset.

Register 22: This register specifies the minimum arc on time for a weld before it is saved in memory as a new weld record.

Register 23: The total number of welds made since the last reset.

Register 24: The MSB byte is used to specify the number of samples that are averaged together for a single sample. The LSB byte specifies the minimum time for a valid arc off condition to be set (0.01 sec increments).

Register 25: Print Cycle time in 1 second increments.

Register 26: Default Travel Speed in 0.1 IPM or MM/S.

Register 27: Default Weld length used for calculation of heat input in 0.1 inch or mm.

Register 28: Travel speed scale factor (Weld Diameter/ Sensor Diameter) in .001 increments

Register 29: Number of totalized stored in memory.
6.0 ETHERNET COMMUNICATIONS SETUP

WDL III IP Setup

Our recommended way to configure the IP address in the WDL III is to provide the WDL III MAC ID to your IT professional and have them assign and reserve an IP address on your network for the control. The IT personnel would then give you the IP address used on the network for the WDL III. Enter that IP address in the TCP/IP Address window in the Setup Comm Port window of the ARC Track II program then click on the SET PORT button.

The WDL III is pre-configured for DHCP IP address connection. When connected to a network the control will request an IP address.

To configure the WDL III with a fixed IP address, preform the following:

First connect the WDL III to a network. Open the ARC Track II Program and click on the SYSTEM CONFIG tab. Locate the “Scan Network” Pull Down window. In the pull down window click the “Device Scan” button. The Device Scan will search for connected devices on the network.

Use the IP addressed associated with the WDL III MAC ID (the MAC ID number is posted on the WDL III).

Open your internet browser. In the browser bar enter the scanned IP address associated with the device MAC ID. Example: http://192.168.212.30 then press enter.

Note: The IP address you enter will be different from this example. Enter the IP address found during the Device Scan.
A sign in window will pop up when you are connected to the device.

![Windows Security dialog box](image1.png)

Enter User Name : admin
Password: PASS

The XPORT PRO Lantronix Web Manager page will open

![XPORT Pro interface](image2.png)

Locate “Network” in the left hand column and click on it.

![Network Status page](image3.png)

The Network Status page will open. Click on the “Configuration”

The Network Configuration page will open.
Set the DHCP to OFF

Enter the desired IP address

EXAMPLE:

Click “Submit”

WARNING:

VERIFY THAT THE CORRECT IP ADDRESS IS ENTERED PRIOR TO CLICKING THE “SELECT” BUTTON. AN INCORRECT ENTRY WILL CAUSE LOSS OF COMMUNICATIONS TO THE DEVICE AND MAY BE NON RECOVERABLE.

For direct connect Ethernet procedure please contact Computer Weld Technology, Inc (www.support@cweldtech.com).
7.0 INSTALLATION DRAWINGS AND PARTS LISTS

7.1 WDL III STANDARD SYSTEM CONFIGURATIONS

There are two different standard system configurations for the WDL III.

1. Ethernet System - P/N: A0A0171-ETH
 (Enclosure contains built-in auto-sensing 10/100 Mbps Ethernet port)

2. USB System - P/N: A0A0171-USB
 (Enclosure contains built-in USB port)

BILL OF MATERIALS FOR WDL III SYSTEMS

WDL III ETHERNET SYSTEM - P/N: A0A0171-ETH

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0281-ETH</td>
<td>WDL III Enclosure Assembly – Ethernet Model</td>
</tr>
<tr>
<td>1</td>
<td>A0A0173</td>
<td>Clamp-On Current Sensor Kit (sensor and cable)</td>
</tr>
<tr>
<td>1</td>
<td>A3W0372</td>
<td>Voltage Sense Cable</td>
</tr>
<tr>
<td>1</td>
<td>X3T5089</td>
<td>Universal Power Supply</td>
</tr>
<tr>
<td>1</td>
<td>X3W5128</td>
<td>10' CAT 5E 24awg Shielded Gray Patch Cable</td>
</tr>
</tbody>
</table>

WDL III USB SYSTEM - P/N: A0A0171-USB

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0281-USB</td>
<td>WDL III Enclosure Assembly – USB Model</td>
</tr>
<tr>
<td>1</td>
<td>A0A0173</td>
<td>Clamp-On Current Sensor Kit (sensor and cable)</td>
</tr>
<tr>
<td>1</td>
<td>A3A0282</td>
<td>Voltage Sense Cable</td>
</tr>
<tr>
<td>1</td>
<td>X3T5089</td>
<td>Universal Power Supply</td>
</tr>
<tr>
<td>1</td>
<td>X3W5146</td>
<td>6' USB 2.0 Male-A to Female-A Shielded Cable w/ Ferrites</td>
</tr>
</tbody>
</table>
7.2 WDL III SYSTEM UPGRADES

Wire Speed Sensor Kits:
1. Quick Disconnect Wire Speed Sensor Kit - P/N: A0A0179
2. Quick Disconnect Large Diameter Wire Speed Sensor Kit - P/N: A0A0180

Travel Speed Sensor Kit - P/N: A0A0182

Gas Flow Sensor Kit - P/N: A0A0183

Temperature Sensor Kits:
1. Thermocouple Type “K” Sensor Kit - P/N: A0A0184
2. Thermocouple Type “J” Sensor Kit - P/N: A0A0185
3. Thermocouple Type “T” Sensor Kit - P/N: A0A0186
4. 0-400° F (-18 - 202° C) Infrared Sensor Kit - P/N: A0A0198
5. 300-1000° F (149 - 538° C) Infrared Sensor Kit - P/N: A0A0199

I/O Cable - P/N: A3W0380

Serial Printer Kit – P/N: A0A0188

Ethernet or USB Supplies
1. Ethernet or USB Cable (customer supplied)
2. Ethernet Crossover Cable – P/N: X3W5141
7.3 CURRENT SENSOR KIT

CLAMP-ON CURRENT SENSOR KIT - P/N: A0A0173

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X3Q5010</td>
<td>Current Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0369</td>
<td>Current Sensor Cable</td>
</tr>
</tbody>
</table>

CURRENT SENSOR INSTALLATION

FROM NEGATIVE TERMINAL OF WELDING POWER SUPPLY TO WORKPIECE

CURRENT SENSOR DIMENSIONS

[Diagram showing dimensions and connections of the current sensor kit]
7.4 VOLTAGE SENSE CABLE

VOLTAGE SENSE CABLE - P/N: A3W0372

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>X3W5114</td>
<td>Cable, M12 4 Conductor Female Straight Single Ended</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>X3P5067</td>
<td>Clamp, Pigmy Black</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>X3P5068</td>
<td>Clamp, Pigmy Red</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WIRE COLOR</th>
<th>PIN NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>1</td>
<td>+Volt</td>
</tr>
<tr>
<td>White</td>
<td>2</td>
<td>Not Used</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>-Volt</td>
</tr>
<tr>
<td>Black</td>
<td>4</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
7.5 WIRE SPEED SENSOR KITS

QUICK DISCONNECT WIRE SPEED SENSOR KIT - P/N: A0A0179

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0222</td>
<td>Large Diameter Wire Speed Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0374</td>
<td>Wire Speed Sensor Cable</td>
</tr>
</tbody>
</table>

QUICK DISCONNECT LARGE DIAMETER WIRE SPEED SENSOR KIT - P/N: A0A0180

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0260</td>
<td>Large Diameter Wire Speed Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0374</td>
<td>Wire Speed Sensor Cable</td>
</tr>
</tbody>
</table>
DIMENSIONS FOR QUICK DISCONNECT SENSORS P/N: A3A0222 & A3A0260

OUTPUT SIDE PANEL VIEW

WIRE SPEED SENSOR FITTING

LEFT END VIEW

2.38

3.00

5.38

TOP VIEW

WIRE SPEED SENSOR FITTING

RIGHT END VIEW

2.44

SENSOR COMMUNICATIONS CONNECTOR

INPUT SIDE PANEL VIEW
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A2A0014</td>
<td>Driven Wheel Assembly</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A2M0203</td>
<td>Guide Block</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>A2M0204</td>
<td>Bearing Cartridge</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>A2M0205</td>
<td>WFS Shaft</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>A2M0206</td>
<td>WFS Transducer Block</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>A3E0141</td>
<td>Guide Handle</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>A3E0145</td>
<td>Cover</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>A3W0331</td>
<td>Wire Harness</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>X2B5070</td>
<td>Bearing</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>X2B5002</td>
<td>Stationary Bushing</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>X2N5023</td>
<td>Flat Spring</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>X2P5004</td>
<td>Wheel</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>X3M5044</td>
<td>Encoder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>X6B5025</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>X6B5054</td>
<td>Shaft Collar</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>X6B5055</td>
<td>Locator Button</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>X6F5090</td>
<td>Fitting, Quick Disconnect</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>X6F5102</td>
<td>Fitting, Nipple</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>X6P5007</td>
<td>Dowel Pin</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td></td>
<td>#6-32 X 5/16" Pan Head Screw W/ Internal Lock Washer</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>#0-80 X 3/8" Philips Pan Head Screw</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>#6-32 X 3/4" Socket Button Head Screw</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>#8-32 X 1/2" Socket Flat Head Screw</td>
</tr>
<tr>
<td>ITEM</td>
<td>QTY</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>A2A0014</td>
<td>Driven Wheel Assembly</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A2M0211</td>
<td>Guide Block</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>A2M0204</td>
<td>Bearing Cartridge</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>A2M0205</td>
<td>WFS Shaft</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>A2M0206</td>
<td>WFS Transducer Block</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>A3E0141</td>
<td>Guide Handle</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>A3E0145</td>
<td>Cover</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>A3W0331</td>
<td>Wire Harness</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>X2B5070</td>
<td>Bearing</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>X2B5002</td>
<td>Stationary Bushing</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>X2N5023</td>
<td>Flat Spring</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>X2P5004</td>
<td>Wheel</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>X3M5044</td>
<td>Encoder</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>X6B5025</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>X6B5054</td>
<td>Shaft Collar</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>X6B5055</td>
<td>Locator Button</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>X6F5090</td>
<td>Fitting, Quick Disconnect</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>X6F5102</td>
<td>Fitting, Nipple</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>X6P5007</td>
<td>Dowel Pin</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>#6-32 X 5/16" Pan Head Screw W/ Internal Lock Washer</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>#0-80 X 3/8" Philips Pan Head Screw</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>#6-32 X 3/4" Socket Button Head Screw</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>#8-32 X 1/2" Socket Flat Head Screw</td>
<td></td>
</tr>
</tbody>
</table>
7.6 TRAVEL SPEED SENSOR KIT

TRU-TRAC TRAVEL SPEED SENSOR KIT - P/N: A0A0182

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0263</td>
<td>Tru-Trac Travel Speed Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0376</td>
<td>Travel Speed Sensor Cable</td>
</tr>
</tbody>
</table>

TRAVEL SPEED SENSOR DIMENSIONS
DIMENSIONS FOR THE TRU-TRAC TRAVEL SPEED SENSOR MOUNTING BRACKET
GAS FLOW SENSOR KIT - P/N: A0A0183

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A3A0277</td>
<td>GFM – GAS FLOW MONITOR</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A3E0104</td>
<td>GTFM4 MOUNTING BAR</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>A3W0377</td>
<td>GAS FLOW MONITOR CABLE</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>X6F5093</td>
<td>ADAPTOR FITTING</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>X6F5094</td>
<td>BARB FITTING</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>X6F5095</td>
<td>"B" SIZE NUT</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td>#10-32 X 1/2" LG. SOCKET FLAT HD. SCREW</td>
</tr>
</tbody>
</table>
7.8 TEMPERATURE SENSOR KITS

THERMOCOUPLE TYPE "K" SENSOR KIT - P/N: A0A0184

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0285</td>
<td>Thermocouple Type "K" Sensor Box</td>
</tr>
<tr>
<td>1</td>
<td>A3W0378</td>
<td>Thermocouple Cable</td>
</tr>
</tbody>
</table>

THERMOCOUPLE TYPE "J" SENSOR KIT - P/N: A0A0185

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0286</td>
<td>Thermocouple Type "J" Sensor Box</td>
</tr>
<tr>
<td>1</td>
<td>A3W0378</td>
<td>Thermocouple Cable</td>
</tr>
</tbody>
</table>

THERMOCOUPLE TYPE "T" SENSOR KIT - P/N: A0A0186

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0287</td>
<td>Thermocouple Type "T" Sensor Box</td>
</tr>
<tr>
<td>1</td>
<td>A3W0378</td>
<td>Thermocouple Cable</td>
</tr>
</tbody>
</table>

THERMOCOUPLE SENSOR DIMENSIONS
0-400° F (-18 - 202° C) INFRARED SENSOR KIT - P/N: A0A0198

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0303</td>
<td>0-400° F Infrared Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0378</td>
<td>Infrared Cable</td>
</tr>
</tbody>
</table>

300-1000° F (149 - 538° C) INFRARED SENSOR KIT - P/N: A0A0199

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3A0304</td>
<td>300-1000° F Infrared Sensor</td>
</tr>
<tr>
<td>1</td>
<td>A3W0378</td>
<td>Infrared Cable</td>
</tr>
</tbody>
</table>

INFRARED SENSOR DIMENSIONS

- 3.50
- 1.31
- Ø0.75
- 5/4-16 UNF
- 2 HEX NUTS
- 6' CABLE
- 5 PIN M12 CONNECTOR
7.9 I/O CABLE

I/O CABLE - P/N: A3W0380

- Wire Color: White, Brown, Green, Yellow, Gray, Pink, Blue, Red
- Pin Number: 1, 2, 3, 4, 5, 6, 7, 8
- Description: INP1, INP2, INP3, INP COM, CR1, CR2, CR3, OUT COM

Length: ~6 meter
7.10 SERIAL PRINTER KIT

SERIAL PRINTER KIT - P/N: A0A0188

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X3U5011</td>
<td>Serial Printer</td>
</tr>
<tr>
<td>1</td>
<td>A3W0399</td>
<td>Serial Printer Cable</td>
</tr>
</tbody>
</table>

3" WIDE PRINTER PAPER - P/N: X3U5010
7.11 ETHERNET CONFIGURATIONS

DIRECT PC CONNECTION

Contact Computer Weld Technology (www.support@cweldtech.com) for Direct Connect PC to WDL III instructions.

ROUTER OR SWITCHER CONNECTION

![Diagram of Router or Switcher Connection]

- COMPUTER
- STANDARD CAT5E CABLE
- SWITCHER OR ROUTER
- STANDARD CAT5E CABLE
- WDL III ENCLOSURE
7.12 HIGH FREQUENCY ISOLATION KIT

Voltage Isolation Sensor – P/N: A3A0282

The rest of the kit includes ferrite beads for sensor and printer cable.
7.13 USB CONFIGURATIONS

Our recommended way to configure the WDL III USB Communications is to install the USB Driver file located on the ARC Track II CD or from our web site (contact Computer Weld Technology, Inc. for web site driver installation instructions).

If you do not have FULL ADMINISTRATIVE PRIVILEGES on your computer you will need to contact your company IT Professional for assistance with installing these drivers and the ARC Track II Program (the ARC Track II Program will need privileges enabled for creating file folders and read and write privileges as a minimum).

Insert the ARC Track II CD into your computer. The CD will Auto Boot to the ARC Track II Installation Wizard screen.

![Image of ArcTrack II Installation Wizard]

Click the correct Windows Driver for your operating system.

![Image of USB Driver Installer]

The USB Driver Installer will display. Click “Next”
Connect the WDL III USB cable to the computer USB port and the WDL III USB port. Apply Power to the WDL III. Depending on the version of Windows you are using you should see a “Plug and Play” notification on the Computer Desktop indicating that the USB Device drive has been located.

Once the driver installation is complete you will see a COM Port assignment notification. **Make note of the Com Port Number assigned to the USB device.** You will need that number to connect to the WDL III using the ARC Track II Program. In this example the Com Post number is 10.

If you fail to notice the Com Port Number or wish to change the port number, open the Windows Control Panel.
Select the “Hardware and Sound” category

Select the “Device Manager”

Locate the “Ports(COM&LPT)” and click on it
In the Port List locate the “Silicon Labs CP210x USB to UART Bridge (COMX)”. That is the assigned comport number for the USB device for use with the ARC Track II Program.
If you wish to change the Port number Double Click the “Silicon Labs CP210x USB to UART Bridge (COMX)” and the Properties Window will open.

Click on the “Port Settings” Tab

Click on “Advanced...”
Use the “COM Port Number” pull down window to select any port not “IN USE”
Click “OK” on each window to exit and save the setting.

Open the ARC Track II Program you will notice that it is “OFF LINE”

Click on the “System Config” Tab

Click the “Setup Comm Port” button
Use the “COMM” dial to select the correct COM Number
Use the “NODE” dial to set the correct Node number (default number is 1)
Use the “SENSOR” dial to select WDL III

Click the “Set Port” button and the communications status should change to “ON LINE”
Terms and Definitions

GLOSSARY

A

ADC – AMPS Direct Current

ARP - Address Resolution Protocol (ARP) is a telecommunication protocol used for resolution of network layer addresses into link layer addresses, a critical function in multiple-access networks.

ASCII - American Standard Code for Information Interchange is a character encoding. ASCII codes represent text in computers, telecommunications equipment, and other devices.

AUTO IP - Automatic Private IP Addressing or Auto IP is a method of automatically assigning IP addresses to networked computers and printers.

B

BCD FORMAT – binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four or eight.

BOOTP - Bootstrap Protocol (BOOTP) is a computer networking protocol used in Internet Protocol networks to automatically assign an IP address to network devices from a configuration server.

C

CFH – Cubic Feet Per-Hour

D

DEC - Decrement

DEVICE ID – An individual station identification number ranging from 1 to 247 used in Modbus Communications Protocol.

DHCP - Dynamic Host Configuration Protocol (DHCP) is a standardized network protocol used on Internet Protocol (IP) networks for dynamically distributing network configuration parameters, such as IP addresses for interfaces and services.

G

GFM – Gas Flow Meter

GTAW – Gas Tungsten ARC Welding
H

HALL-EFFECT - Hall Effect is the production of a voltage difference (the **Hall voltage**) across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current.

HTTP - Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia information systems.

I

INC - Increment

IPM – Inches Per-Minute (IPM) A unit of measurement for distance moved in inches in one minute.

L

LED - light-emitting diode (LED) is a two-lead semiconductor light source.

LPM – Liters Per-Minute

LSB - least significant bit (LSB) is the bit position in a binary integer giving the units value, that is, determining whether the number is even or odd. The LSB is sometimes referred to as the **right-most bit**, due to the convention in positional notation of writing less significant digits further to the right. It is analogous to the least significant digit of a decimal integer, which is the digit in the **ones** (right-most) position.

M

MAX – Maximum

MIN - Minimum

MM/S - Millimeters Per-Second (mm/s) A unit of measurement for distance in millimeters moved in one second.

MODBUS/IP – Modbus/IP - is a Modbus variant used for MODBUS communications over TCP/IP networks, connecting over port 502.

MODBUS RTU - Modbus RTU - is used for serial communication & makes use of a compact, binary representation of the data for protocol communication.

MSB - most significant bit (MSB), also called the high-order bit is the bit position in a binary number having the greatest value. The MSB is sometimes referred to as the **left-most bit** due to the convention in positional notation of writing more significant digits further to the left.

O

OLED - organic light-emitting diode (OLED) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current.

P

PAW – Plasma ARC Welding

PCB – Printed Circuit Board

PGM - Program
PSI – Pounds Per Square Inch

RTC – Real Time Clock

SMTP - Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail (email) transmission

SNMP - Simple Network Management Protocol (SNMP) is an Internet-standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behavior.

SSR – Solid State Relay

TCP/IP - Transmission Control Protocol (TCP)/Internet Protocol (IP) provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed and received over the Internet.

TELNET - Telnet is an application layer protocol used on the Internet or local area networks to provide a bidirectional interactive text-oriented communication facility using a virtual terminal connection.

TFTP - Trivial File Transfer Protocol (TFTP) is a simple, lockstep, File Transfer Protocol which allows a client to get from or put a file onto a remote host.

TRANSDUCER - converts linear or rotary position to an electronic signal.

UDP/IP - User Datagram Protocol (UDP)/Internet Protocol (IP) is one of the core members of the Internet protocol suite which provides a simple connectionless transmission model with a minimum of protocol mechanism.

VDC – Volts Direct Current